Optimal sequence for chain matrix multiplication using evolutionary algorithm
نویسندگان
چکیده
منابع مشابه
Toward an Optimal Algorithm for Matrix Multiplication
Ever since the dawn of the computer age, researchers have been trying to find an optimal way of multiplying matrices, a fundamental operation that is a bottleneck for many important algorithms. Faster matrix multiplication would give more efficient algorithms for many standard linear algebra problems, such as inverting matrices, solving systems of linear equations, and finding determinants. Eve...
متن کاملEvolutionary Search for Matrix Multiplication Algorithms
This paper addresses the problem of algorithm discovery, via evolutionary search, in the context of matrix multiplication. The traditional multiplication algorithm requires O(n3) multiplications for square matrices of order n. Strassen (Strassen 1969) discovered a re, cursive matrix multiplication algorithm requiring only seven multiplications at each level, resulting in a runtime of O(n/x7), o...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولThe Mailman algorithm for matrix vector multiplication
Given an m×n matrix A we are interested in applying it to a real vector x ∈ R in less then the trivial O(mn) time. Since we are interested in a deterministic exact computation we must, at the very least, access all the entrees in A. This requires O(mn) operations and matches the running time of naively applying A to x. However, we claim that if the matrix contains only a constant number of dist...
متن کاملQuantum hyperparallel algorithm for matrix multiplication.
Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is sepa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PeerJ Computer Science
سال: 2021
ISSN: 2376-5992
DOI: 10.7717/peerj-cs.395